We know that |x + y| < |x| + |y|.
So, each of these fractions lies between 0 and 1. So, all three added together should go from 0 to 3?
Is that the case? Is 2IIM running questions that are this simple?
When would this be 3? If x, y and z all have the same sign. Each fraction would be 1 and we would get 3 overall. Spot on! So, the maximum value is 3.
When can this go to zero.
When x = -y this fraction goes to 0. When x and y have opposite signs, the first term would go to zero. Likewise for the second and third terms as well.
So, what is the catch.
Among x, y, and z at least two will have the same sign.
So, of the three terms maximum of two can go to zero. One will be +1.
So, the minimum total overall = 1 (not 3)
Correct Answer: A. 1