A CAT Number theory question from Number Systems: Digits that appears in the Quantitative Aptitude section of the CAT Exam will consist of concepts from Digits, Test of Divisibility, Perfect squares and so on. In CAT Exam, one can expect to get 1~2 questions from CAT Number Systems: Digits. Make use of 2IIMs Free CAT Questions, provided with detailed solutions and Video explanations to obtain a wonderful CAT score. If you would like to take these questions as a Quiz, head on here to take these questions in a test format, absolutely free.
How many numbers with distinct digits are possible product of whose digits is 28?
A page is torn from a novel. The sum of the remaining page numbers is 10000. What is the sum of the two page-numbers on the torn page of this novel?
A 4-digit number of the form aabb is a perfect square. What is the value of a - b?
What are the last two digits of the number 7^{45}?
n^{2} + 5n + 6 is a multiple of 6. n is natural number less than 100. How many values can n take?
[x] is the greatest integer less than or equal to x. Find the number of positive integers n such that [\\frac{n}{11}\\)] = [\\frac{n}{13}\\)] .
Positive numbers 1 to 55, inclusive are placed in 5 groups of 11 numbers each. What is the maximum possible average of the medians of the 5 groups?
N is an 80-digit positive integer (in the decimal scale). All digits except the 44^{th} digit (from the left) are 2. If N is divisible by 13, find the 44^{th} digit?
A number 4^{16} + 1 is divisible by x. Which among the following is also divisible by x?
Which among the following is the smallest 7 digit number that is exactly divisible by 43?
How many 3-digit positive integers, with digits a, b and c exist such that a < b and c < b? Assume that a is in hundred's place, b is in ten's place, c is in unit's place and a is a non-zero digit.
IPMAT Rohtak Sample Paper Mock
IPMAT Indore Sample Paper Mock
Please note that the explanation button will take you to the IPMAT solution page.
If * = +, / = -, + = *, - = / then 43 * 561 + 500 - 100 / 10 = ?
Assume that all positive integers are written down consecutively from left to right as in 1234567891011...... The 6389^{th} digit in this sequence is
The number of pairs of integers whose sums are equal to their products is
How many different numbers can be formed by using only the digits 1 and 3 which are smaller than 3000000 ?
The Questions that follow, are from actual CAT papers. If you wish to take them separately or plan to solve actual CAT papers at a later point in time, It would be a good idea to stop here.
The numbers 1, 2,..., 9 are arranged in a 3 X 3 square grid in such a way that each number occurs once and the entries along each column, each row, and each of the two diagonals add up to the same value. If the top left and the top right entries of the grid are 6 and 2, respectively, then the bottom middle entry is: [TITA]
If the product of three consecutive positive integers is 15600 then the sum of the squares of these integers is
How many different pairs (a, b) of positive integers are there such that a ≤ b and \\frac{1}{a}) + \\frac{1}{b}) = \\frac{1}{9}) ? [TITA]
While multiplying three real numbers, Ashok took one of the numbers as 73 instead of 37. As a result, the product went up by 720. Then the minimum possible value of the sum of squares of the other two numbers is: [TITA]
How many numbers with two or more digits can be formed with the digits 1, 2, 3, 4, 5, 6, 7, 8, and 9 so that in every such number, each digit is used at most once and the digits appear in the ascending order?[TITA]
If the sum of squares of two numbers is 97, then which one of the following cannot be their product?
How many two-digit numbers, with a non-zero digit in the units place, are there which are more than thrice the number formed by interchanging the positions of its digits?
The product of two positive numbers is 616. If the ratio of the difference of their cubes to the cube of their difference is 157 : 3, then the sum of the two numbers is
Let a, b, x, y be real numbers such that a^{2} + b^{2} = 25 , x^{2} + y^{2} = 169 and ax + by = 65. If k = ay - bx, then
How many pairs (m,n) of positive integers satisfy the equation the equation m^{2} + 105 = n^{2}? [TITA]
In a six-digit number, the sixth, that is, the rightmost, digit is the sum of the first three digits, the fifth digit is the sum of first two digits, the third digit is equal to the first digit, the second digit is twice the first digit and the fourth digit is the sum of fifth and sixth digits. Then, the largest possible value of the fourth digit is [TITA]
Copyrights © All Rights Reserved by 2IIM.com - A Fermat Education Initiative.
Privacy Policy | Terms & Conditions
CAT^{®} (Common Admission Test) is a registered trademark of the Indian Institutes of Management. This website is not endorsed or approved by IIMs.
2IIM Online CAT Coaching
A Fermat Education Initiative,
58/16, Indira Gandhi Street,
Kaveri Rangan Nagar, Saligramam, Chennai 600 093
Phone: (91) 44 4505 8484
Mobile: (91) 99626 48484
WhatsApp: WhatsApp Now
Email: prep@2iim.com